SHILLING

“A Peer-to-Peer Electronic Cash System Made in Africa for Africa.”

By
KELVIN YAVWA

admin@diqitalshilling.org

Official Website
www.digitalshilling.org/



mailto:admin@digitalshilling.org
http://www.digitalshilling.org/

Official blockchain explorer
https://chainz.cryptoid.info/sh/

Twitter account
https://twitter.conVDigital Shilling/

Telegram
https://t.me/shillingcoin

Instagram
https: //www.instagram.conmvshillingcoin/

Our Market Capitalization
https://www.coingecko.com/en/coins/shilling/

Bitcoin talk thread
https://bitcointal k.or g/index.php?topic= 1588787

L egal Disclaimer
https://digitalshilling.org/policy.html

Copyrights
https://digitalshilling.org/copyrights.html



https://chainz.cryptoid.info/sh/
https://twitter.com/DigitalShilling/
https://t.me/shillingcoin
https://www.instagram.com/shillingcoin/
https://www.coingecko.com/en/coins/shilling/
https://bitcointalk.org/index.php?topic=1588787
https://digitalshilling.org/policy.html
https://digitalshilling.org/copyrights.html

SUMMARY

There has been massive rise of financial inclusion micaflargely accelerated by mobile phones
and the internet. The unbanked in Africa use mobile mone®g taransact on their daily
activities making physical cash less used. The biggeseagaliwith mobile money has been
Excessive regulations across different borders & bureaypcetated challenges. As per a World
Bank report 2017 where remittances claims a significant stianest African countries Gross
Domestic Product, it’s a field worth investing in.

Setting up and managing mobile money Transfer systems @nafhffgovernments, across
different bureaucratic borders is expensive both irsbieet and long term.

Borderless decentralized Mobile Cash systems can dos/problem yet maintain that
simplified easy access to your cash across differanitdes globally.

This introduces us to Shilling.

Shilling is a purely peete-peer version of electronic cash that would allow onlingvgnts to

be sent directly from one party to another globally auithgoing through a financial institution.
A secure, decentralized, publicly managed banking ledger thaiseilDigital signatures to
provide the solution to prevent double-spending.

We propose a solution to the double-spending problem using dopeeer network. The
network timestamps transactions by hashing them intagaoiing chain of hash-based pra¥-
work using Scrypt Algorithm, forming a record that cannot @ngkd without redoing the
proof-of-work. The longest chain not only serves as proof ofdugience of events witnessed,
but proof that it came from the largest pool of CPU powsrlofAg as a majority of CPU power
is controlled by nodes that are not cooperating to attacketinork, they'll generate the longest
chain and outpace attackers. The network itself reqoineisnal structure. Messages are
broadcast on a best effort basis, and nodes can ledwejain the network at will, accepting the
longest proo®f-work chain as proof of what happened while they were gone.



How does Shilling work?

Lets say; Raila wants to purchase a product from Uhuru

\TART CF
PANSACTION R!Illl
I % > e ot ook send
v
Rails wans 1o send soome Shillings w0 Uhur f a
Yivlie aaifvess Fild thw coonoumtr Ay A .
wanes N yewnd ———
S g woller vertfivs
) \I‘N .‘«\lv'l”:‘-. [1LE lf‘\l'l'l'xJ o0 e l."l‘ y
' Thuaction snbee Raiks
AW (AISOCTON JVooessing p 'y
. " y ‘
Notrser commnmty Anorw as winerx HR AL
o W Fyoues e A ) A ¢ ¢
PP — . Snttinnc are Senypt Alperithm iy Qe
‘ ) 'Y compler manh prodfems usavg trere
)
" y . DRI oo o vl the
y ;
LT T M CodA T ) a“r ‘ -
Théix #x n 'A N Y = PO non Avoued o process oot smimge
smdroafvend i the nedwerd .

J 2
The Sock 15 revordad v @ node o ricenliang
l andd Srowkcasiod soross sleilar nodes LR
Trmssctiion
A vode is 9 Program . Five novke verlfies Sveeriv/ Aol
o Beus S S0alfing Mevword Pa e resndy omsn o2 it
by Acvwptiog & Fafiaung }and propagaves
Fromvncriony and ocks . : e Mcd

Introduction Commerce on the Internet has come to rely almostusixelly on financial
institutions serving as trusted third parties to process efectpayments. While the system
works well enough for most transactions, it still suffieosn the inherent weaknesses of the trust
based model. Completely non-reversible transactiomaat really possible, since financial
institutions cannot avoid mediating disputes. The costefiaion increases transaction costs,
limiting the minimum practical transaction size and culttifighee possibility for small casual
transactions, and there is a broader cost in theofcasility to make non-reversible payments for
nonreversible services. With the possibility of reverda need for trust spreads. Merchants
must be wary of their customers, hustling them for niofiemation than they would otherwise
need. A certain percentage of fraud is accepted as unawaiddiglse costs and payment
uncertainties can be avoided in person by using physicarayrbut no mechanism exists to
make payments over a communications channel without adrpatgy. What is needed is an
electronic payment system based on cryptographic proof instéadt, allowing any two

willing parties to transact directly with each other withthe need for a trusted third party.
Transactions that are computationally impractical tonsvevould protect sellers from fraud,
and routine escrow mechanisms could easily be impleménfgotect buyers. In this paper, we
propose a solution to the double-spending problem using a@peer distributed timestamp
server to generate computational proof of the chroncddgirder of transactions. The system is
secure as long as honest nodes collectively contrad @B%J power than any cooperating group
of attacker nodes.



Transactions We define an electronic coin as a chain of digitaiaigres. Each owner transfers
the coin to the next by digitally signing a hash ofgihevious transaction and the public key of
the next owner and adding these to the end of the cquayg@e can verify the signatures to
verify the chain of ownership. The problem of courgtaéspayee can't verify that one of the
owners did not double-spend the coin. A common solutitm iistroduce a trusted central
authority, or mint, that checks every transactiondimuble spending. After each transaction, the
coin must be returned to the mint to issue a new cathpaly coins issued directly from the
mint are trusted not to be double-spent. The problem withdhisan is that the fate of the
entire money system depends on the company running thewitimevery transaction having to
go through them, just like a bank. We need a way for the gaye®w that the previous owners
did not sign any earlier transactions. For our purpdbesgarliest transaction is the one that
counts, so we don't care about later attempts to doublekspea only way to confirm the
absence of a transaction is to be aware of all tréinsacIn the mint based model, the mint was
aware of all transactions and decided which arrived first.

To accomplish this without a trusted party, transactionst ioe publicly announced, and we
need a system for participants to agree on a singleryist the order in which they were
received. The payee needs proof that at the time oftemtdaction, the majority of nodes agreed
it was the first received.

Timestamp Server The solution we propose begins with a timestamp sefvemestamp

server works by taking a hash of a block of items to be stamped and widely published in a
block explorerwhich is similar to bank ledger only difference is it is publibe timestamp
(block Explorer) proves that the data must have existdeedihe, obviously, in order to get into
the hash. Each timestamp includes the previous timestaitgohash, forming a chain of blocks
with each additional timestamp reinforcing the onesreeifo

Proof-of-Work To implement a distributed timestamp server on a fzepeer basis, we will
need to use a proof-work system similar to Adam Back's Hashcash, rather teasgaper or
Usenet posts. The proof-work involves scanning for a value that when hashed, susfittas
Scrypt, the hash begins with a number of zero bits.alleeage work required is exponential in
the number of zero bits required and can be verified byuéirgca single hash. For our
timestamp network, we implement the pradfwork by incrementing a nonce in the block until
a value is found that gives the block's hash the requinedhits. Once the CPU effort has been
expended to make it satisfy the pradfwork, the block cannot be changed without redoing the
work. As later blocks are chained after it, the work tangfe the block would include redoing all
the blocks after it. The proaff-work also solves the problem of determining representation i
majority decision making. If the majority were basedariP-address-one-vote, it could be
subverted by anyone able to allocate many IPs. Rybafork is essentially one-CPU-one-vote.
The majority decision is represented by the longest chdiith has the greatest prooffwork
effort invested in it. If a majority of CPU power is cooiked by honest nodes, the honest chain
will grow the fastest and outpace any competing chains. daifyna past block, an attacker
would have to redo the proof-work of the block and all blocks after it and then catchviip

and surpass the work of the honest nodes. We will shontletethe probability of a slower
attacker catching up diminishes exponentially as subsequehsldoe added. To compensate
for increasing hardware speed and varying interest in running moee time, the proodf-work
difficulty is determined by a moving average targeting anaeenumber of blocks per hour. If
they're generated too fast, the difficulty increases.




Network The steps to run the network are as follows:

1.1.1.1. New transactions are broadcast to all nodes.

1.1.1.2. Each node collects new transactions into a block.

1.1.1.3. Each node works on finding a difficult proof-work for its block.

1.1.1.4. When a node finds a proof-work, it broadcasts the block to all nodes.

1.1.1.5. Nodes accept the block only if all transactions in it atiel\eand not
already spent.

1.1.1.6. Nodes express their acceptance of the block by workingeatiieg the
next block in the chain, using the hash of the accepted#t blethe previous
hash. Nodes always consider the longest chain to bethextone and will
keep working on extending it. If two nodes broadcast difteversions of the
next block simultaneously, some nodes may receive otieather first. In
that case, they work on the first one they receivedsdwg the other branch in
case it becomes longer. The tie will be broken whemeéxé proofof-work is
found and one branch becomes longer; the nodes that wekgvon the
other branch will then switch to the longer one. Newda&tion broadcasts do
not necessarily need to reach all nodes. As long as ¢e many nodes, they
will get into a block before long. Block broadcasts are adterant of dropped
messages. If a node does not receive a block, it will requelsén it receives
the next block and realizes it missed one.

I ncentive by convention, the first transaction in a block is a special tratiea that starts a

new coin owned by the creator of the block. This adds antieedr nodes to support the
network, and provides a way to initially distribute coins ititoulation, since there is no central
authority to issue them. The steady addition of a cahsfaamount of new coins is analogous
to gold miners expending resources to add gold to circulaticour case, it is CPU time and
electricity that is expended. The incentive can alstubded with transaction fees. If the output
value of a transaction is less than its input value difference is a transaction fee that is added
to the incentive value of the block containing the transac@mce a predetermined number of
coins have entered circulation, the incentive camsit@an entirely to transaction fees and be
completely inflation free. The incentive may help anege nodes to stay honest. If a greedy
attacker is able to assemble more CPU power than all tleshnodes, he would have to
choose between using it to defraud people by stealing back his gayoremsing it to generate
new coins. He ought to find it more profitable to play by thles, such rules that favour him
with more new coins than everyone else combined, thandermine the system and the
validity of his own wealth.

Reclaiming Disk Space Once the latest transaction @iraig buried under enough blocks, the
spent transactions before it can be discarded to ssivasmhce. To facilitate this without
breaking the block's hash, transactions are hashed imkdeMeee with only the root included

in the block's hash. Old blocks can then be compactetubyping off branches of the tree.
Simplified Payment Verification It is possible to venfgyments without running a full network
node. A user only needs to keep a copy of the block heafifrs longest proobf-work chain,
which he can get by querying network nodes until he's convincedshbeédbngest chain, and
obtain the Merkle branch linking the transaction tolloek it's time stamped in. He can't check
the transaction for himself, but by linking it to a plac¢hie chain, he can see that a network
node has accepted it, and blocks added after it further oothfe network has accepted it. As




such, the verification is reliable as long as honedes@ontrol the network, but is more
vulnerable if the network is overpowered by an attacker. \Mieite’ork nodes can verify
transactions for themselves, the simplified method eafotled by an attacker's fabricated
transactions for as long as the attacker can continoetpower the network. One strategy to
protect against this would be to accept alerts from netwadksiwhen they detect an invalid
block, prompting the user's software to download the full blodkaderted transactions to
confirm the inconsistency. Businesses that receive émtqoayments will probably still want to
run their own nodes for more independent security and quiekéication.

Combining and Splitting Values although it would be possible halleacoins individually, it
would be unwieldy to make a separate transaction for eestyirc a transfer. To allow value to
be split and combined, transactions contain multiple inpdsoutputs. Normally there will be
either a single input from a larger previous transactiomutiple inputs combining smaller
amounts, and at most two outputs: one for the paymeato@e returning the change, if any,
back to the sender. It should be noted that fan-outiendnéransaction depends on several
transactions, and those transactions depend on manyisnog,a problem here. There is never
the need to extract a complete standalone copy of att@mss history. 5 Transaction In ... In
Out ... Hash01 Hash2 Hash3 Hash23 Block Header Merkle Root Prev Hash Blook Header
Merkle Root Prev Hash Nonce Block Header Merkle Root Pigsh Nonce Merkle Branch for
Tx3 Longest Proobf-Work Chain Tx3 10. Privacy The traditional banking modli@ves a
level of privacy by limiting access to information to the jgarinvolved and the trusted third
party. The necessity to announce all transactions pulplielsiudes this method, but privacy can
still be maintained by breaking the flow of informatioraimother place: by keeping public keys
anonymous. The public can see that someone is sendingoamtatm someone else, but without
information linking the transaction to anyone. This is simib the level of information released
by stock exchanges, where the time and size of individadés, the "tape”, is made public, but
without telling who the parties were. As an additionalWa#, a new key pair should be used for
each transaction to keep them from being linked to a commoaro®ome linking is still
unavoidable with multi-input transactions, which necessegilgal that their inputs were owned
by the same owner. The risk is that if the owner of aikegvealed, linking could reveal other
transactions that belonged to the same owner.

Calculations We consider the scenario of an attacker trying to gemaraalternate chain faster
than the honest chain. Even if this is accomplisitethes not throw the system open to arbitrary
changes, such as creating value out of thin air ongakioney that never belonged to the
attacker. Nodes are not going to accept an invalid transactipayanent, and honest nodes will
never accept a block containing them. An attacker can gntg thange one of his own
transactions to take back money he recently spentraiecbetween the honest chain and an
attacker chain can be characterized as a Binomial Raidalk. The success event is the honest
chain being extended by one block, increasing its lead by +Xharidilure event is the

attacker's chain being extended by one block, reducing the gap Diye probability of an
attacker catching up from a given deficit is analogous torab®a's Ruin problem. Suppose a
gambler with unlimited credit starts at a deficit and plpgtentially an infinite number of trials

to try to reach breakeven. We can calculate the probabdigver reaches breakeven, or that an
attacker ever catches up with the honest chain, asv®[8]: p = probability an honest node
finds the next block q = probability the attacker finds tegt iblock qz = probability the attacker
will ever catch up from z blocks behind qz={ 1 if p<q {59/ pr# z if p5q} 6 Identities



Transactions Trusted Third Party Counterparty Public Idestitransactions Public New
Privacy Model Traditional Privacy Model Given our assuopthat p > g, the probability drops
exponentially as the number of blocks the attacker haatth ap with increases. With the odds
against him, if he doesn't make a lucky lunge forward eayis chances become vanishingly
small as he falls further behind. We now consider how lbagécipient of a new transaction
needs to wait before being sufficiently certain thedseican't change the transaction. We
assume the sender is an attacker who wants to makectipent believe he paid him for a while,
then switch it to pay back to himself after some timegd@ssed. The receiver will be alerted
when that happens, but the sender hopes it will be too lagereteiver generates a new key pair
and gives the public key to the sender shortly before sighimg.prevents the sender from
preparing a chain of blocks ahead of time by working onnticoously until he is lucky enough
to get far enough ahead, then executing the transactibatahoment. Once the transaction is
sent, the dishonest sender starts working in secrepara#iel chain containing an alternate
version of his transaction. The recipient waits uhgl transaction has been added to a block and
z blocks have been linked after it. He doesn't know theteraount of progress the attacker has
made, but assuming the honest blocks took the average expewexbr block, the attacker's
potential progress will be a Poisson distribution withemted valuelfz=z q p To get the
probability the attacker could still catch up now, we multibly Poisson density for each
amount of progress



Conclusion We have proposed a system for electronic transaatidheut relying on trust. We
started with the usual framework of coins made from digitmatures, which provides strong
control of ownership, but is incomplete without a way to en¢\double-spending. To solve this,
we proposed a peéo-peer network using proaff-work to record a public history of
transactions that quickly becomes computationally imprddtcan attacker to change if honest
nodes control a majority of CPU power. The network musb in its unstructured simplicity.
Nodes work all at once with little coordination. Theyrdi need to be identified, since messages
are not routed to any particular place and only need to heig on a best effort basis. Nodes
can leave and rejoin the network at will, accepting thefpobavork chain as proof of what
happened while they were gone. They vote with their CPU poweressing their acceptance of
valid blocks by working on extending them and rejecting invabahs by refusing to work on
them. Any needed rules and incentives can be enforcedhigtbonsensus mechanism.



Refer ences
[1] W. Dai, "b-money," http://www.weidai.com/bmoney.t£898.

[2] H. Massias, X.S. Avila, and J.-J. Quisquater, "Degifja secure timestamping service with minimal trust
requirements,” In 20th Symposium on Information Theory irBiéeelux, May 1999.

[3] S. Haber, W.S. Stornetta, "How to time-stamp a digit@ument," In Journal of Cryptology, vol 3, no 2, pages
99-111, 1991.

[4] D. Bayer, S. Haber, W.S. Stornetta, "Improvingéffeciency and reliability of digital time-stamping,” In
Sequences II: Methods in Communication, Security and Compcitance, pages 329-334, 1993.

[5] S. Haber, W.S. Stornetta, "Secure names for bitgstf In Proceedings of the 4th ACM Conference on
Computer and Communications Security, pages 28-35, April 1997.

[6] A. Back, "Hashcash - a denial of service counter-megshttp://www.hashcash.org/papers/hashcash.pdf, 2002.
[7] R.C. Merkle, "Protocols for public key cryptosystemnis,Proc. 1980 Symposium on Security and Privacy, |IEEE
Computer Society, pages 122-133, April 1980. [8] W. Feller, "Amchiction to probability theory and its
applications," 1957. 9



	Official blockchain explorer
	https://chainz.cryptoid.info/sh/
	Twitter account
	https://twitter.com/DigitalShilling/
	Telegram
	https://t.me/shillingcoin
	Instagram
	https://www.instagram.com/shillingcoin/
	Our Market Capitalization
	https://www.coingecko.com/en/coins/shilling/
	Bitcoin talk thread
	https://bitcointalk.org/index.php?topic=1588787
	Legal Disclaimer
	https://digitalshilling.org/policy.html
	Copyrights
	https://digitalshilling.org/copyrights.html

